February 04, 2020 Volume 16 Issue 05

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Intro to reed switches, magnets, magnetic fields

This brief introductory video on the DigiKey site offers tips for engineers designing with reed switches. Dr. Stephen Day, Ph.D. from Coto Technology gives a solid overview on reed switches -- complete with real-world application examples -- and a detailed explanation of how they react to magnetic fields.
View the video.


Bi-color LEDs to light up your designs

Created with engineers and OEMs in mind, SpectraBright Series SMD RGB and Bi-Color LEDs from Visual Communi-cations Company (VCC) deliver efficiency, design flexibility, and control for devices in a range of industries, including mil-aero, automated guided vehicles, EV charging stations, industrial, telecom, IoT/smart home, and medical. These 50,000-hr bi-color and RGB options save money and space on the HMI, communicating two or three operating modes in a single component.
Learn more.


All about slip rings: How they work and their uses

Rotary Systems has put together a really nice basic primer on slip rings -- electrical collectors that carry a current from a stationary wire into a rotating device. Common uses are for power, proximity switches, strain gauges, video, and Ethernet signal transmission. This introduction also covers how to specify, assembly types, and interface requirements. Rotary Systems also manufactures rotary unions for fluid applications.
Read the overview.


Seifert thermoelectric coolers from AutomationDirect

Automation-Direct has added new high-quality and efficient stainless steel Seifert 340 BTU/H thermoelectric coolers with 120-V and 230-V power options. Thermoelectric coolers from Seifert use the Peltier Effect to create a temperature difference between the internal and ambient heat sinks, making internal air cooler while dissipating heat into the external environment. Fans assist the convective heat transfer from the heat sinks, which are optimized for maximum flow.
Learn more.


EMI shielding honeycomb air vent panel design

Learn from the engineering experts at Parker how honeycomb air vent panels are used to help cool electronics with airflow while maintaining electromagnetic interference (EMI) shielding. Topics include: design features, cell size and thickness, platings and coatings, and a stacked design called OMNI CELL construction. These vents can be incorporated into enclosures where EMI radiation and susceptibility is a concern or where heat dissipation is necessary. Lots of good info.
Read the Parker blog.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


Loss-free conversion of 3D/CAD data

CT CoreTech-nologie has further developed its state-of-the-art CAD converter 3D_Evolution and is now introducing native interfaces for reading Solidedge and writing Nx and Solidworks files. It supports a wide range of formats such as Catia, Nx, Creo, Solidworks, Solidedge, Inventor, Step, and Jt, facilitating smooth interoperability between different systems and collaboration for engineers and designers in development environments with different CAD systems.
Learn more.


Top 5 reasons for solder joint failure

Solder joint reliability is often a pain point in the design of an electronic system. According to Tyler Ferris at ANSYS, a wide variety of factors affect joint reliability, and any one of them can drastically reduce joint lifetime. Properly identifying and mitigating potential causes during the design and manufacturing process can prevent costly and difficult-to-solve problems later in a product lifecycle.
Read this informative ANSYS blog.


Advanced overtemp detection for EV battery packs

Littelfuse has introduced TTape, a ground-breaking over-temperature detection platform designed to transform the management of Li-ion battery systems. TTape helps vehicle systems monitor and manage premature cell aging effectively while reducing the risks associated with thermal runaway incidents. This solution is ideally suited for a wide range of applications, including automotive EV/HEVs, commercial vehicles, and energy storage systems.
Learn more.


Benchtop ionizer for hands-free static elimination

EXAIR's Varistat Benchtop Ionizer is the latest solution for neutralizing static on charged surfaces in industrial settings. Using ionizing technology, the Varistat provides a hands-free solution that requires no compressed air. Easily mounted on benchtops or machines, it is manually adjustable and perfect for processes needing comprehensive coverage such as part assembly, web cleaning, printing, and more.
Learn more.


LED light bars from AutomationDirect

Automation-Direct adds CCEA TRACK-ALPHA-PRO series LED light bars to expand their offering of industrial LED fixtures. Their rugged industrial-grade anodized aluminum construction makes TRACKALPHA-PRO ideal for use with medium to large-size industrial machine tools and for use in wet environments. These 120 VAC-rated, high-power LED lights provide intense, uniform lighting, with up to a 4,600-lumen output (100 lumens per watt). They come with a standard bracket mount that allows for angle adjustments. Optional TACLIP mounts (sold separately) provide for extra sturdy, vibration-resistant installations.
Learn more.


World's first metalens fisheye camera

2Pi Optics has begun commercial-ization of the first fisheye camera based on the company's proprietary metalens technology -- a breakthrough for electronics design engineers and product managers striving to miniaturize the tiny digital cameras used in advanced driver-assistance systems (ADAS), AR/VR, UAVs, robotics, and other industrial applications. This camera can operate at different wavelengths -- from visible, to near IR, to longer IR -- and is claimed to "outperform conventional refractive, wide-FOV optics in all areas: size, weight, performance, and cost."
Learn more.


Orbex offers two fiber optic rotary joint solutions

Orbex Group announces its 700 Series of fiber optic rotary joint (FORJ) assemblies, supporting either single or multi-mode operation ideal for high-speed digital transmission over long distances. Wavelengths available are 1,310 or 1,550 nm. Applications include marine cable reels, wind turbines, robotics, and high-def video transmission. Both options feature an outer diameter of 7 mm for installation in tight spaces. Construction includes a stainless steel housing.
Learn more.


Mini tunnel magneto-resistance effect sensors

Littelfuse has released its highly anticipated 54100 and 54140 mini Tunnel Magneto-Resistance (TMR) effect sensors, offering unmatched sensitivity and power efficiency. The key differentiator is their remarkable sensitivity and 100x improvement in power efficiency compared to Hall Effect sensors. They are well suited for applications in position and limit sensing, RPM measurement, brushless DC motor commutation, and more in various markets including appliances, home and building automation, and the industrial sectors.
Learn more.


Panasonic solar and EV components available from Newark

Newark has added Panasonic Industry's solar inverters and EV charging system components to their power portfolio. These best-in-class products help designers meet the growing global demand for sustainable and renewable energy mobility systems. Offerings include film capacitors, power inductors, anti-surge thick film chip resistors, graphite thermal interface materials, power relays, capacitors, and wireless modules.
Learn more.


Phase-change materials instead of moving parts: Researchers discover a new way to control infrared light

This 8-in. wafer contains phase-change pixels that can be controlled to modulate light. Researchers are studying the properties and behaviors of the pixels to inform the creation of future devices that use phase-change materials. [Image: Nicole Fandel]

 

 

 

 

By Anne McGovern, Lincoln Laboratory, MIT

In the 1950s, the field of electronics began to change when the transistor replaced vacuum tubes in computers. The change, which entailed replacing large and slow components with small and fast ones, was a catalyst for the enduring trend of miniaturization in computer design. No such revolution has yet hit the field of infrared optics, which remains reliant on bulky moving parts that preclude building small systems.

However, a team of researchers at MIT Lincoln Laboratory, together with Professor Juejun Hu and graduate students from MIT's Department of Materials Science and Engineering, is devising a way to control infrared light by using phase-change materials instead of moving parts. These materials have the ability to change their optical properties when energy is added to them.

"There are multiple possible ways where this material can enable new photonic devices that impact people's lives," says Hu. "For example, it can be useful for energy-efficient optical switches, which can improve network speed and reduce power consumption of internet data centers. It can enable reconfigurable meta-optical devices, such as compact, flat infrared zoom lenses without mechanical moving parts. It can also lead to new computing systems, which can make machine learning faster and more power efficient compared to current solutions."

A fundamental property of phase-change materials is that they can change how fast light travels through them (the refractive index). "There are already ways to modulate light using a refractive index change, but phase-change materials can change almost 1,000 times better," says Jeffrey Chou, a team member formerly in the laboratory's Advanced Materials and Microsystems Group.

The team successfully controlled infrared light in multiple systems by using a new class of phase-change material containing the elements germanium, antimony, selenium, and tellurium, collectively known as GSST. This work is discussed in a paper published in Nature Communications.

A phase-change material's magic occurs in the chemical bonds that tie its atoms together. In one phase state, the material is crystalline, with its atoms arranged in an organized pattern. This state can be changed by applying a short, high-temperature spike of thermal energy to the material, causing the bonds in the crystal to break down and then reform in a more random, or amorphous, pattern. To change the material back to the crystalline state, a long- and medium-temperature pulse of thermal energy is applied.

"This changing of the chemical bonds allows for different optical properties to emerge, similar to the differences between coal (amorphous) and diamond (crystalline)," says Christopher Roberts, another Lincoln Lab member of the research team. "While both materials are mostly carbon, they have vastly different optical properties."

Currently, phase-change materials are used for industry applications, such as Blu-ray technology and rewritable DVDs, because their properties are useful for storing and erasing a large amount of information. But so far, no one has used them in infrared optics because they tend to be transparent in one state and opaque in the other. (Think of the diamond, which light can pass through, and coal, which light cannot penetrate.) If light cannot pass through one of the states, then that light cannot be adequately controlled for a range of uses; instead, a system would only be able to work like an on/off switch, allowing light to either pass through the material or not pass through at all.

However, the research team found that that by adding the element selenium to the original material (called GST), the material's absorption of infrared light in the crystalline phase decreased dramatically -- in essence, changing it from an opaque coal-like material to a more transparent diamond-like one. What's more, the large difference in the refractive index of the two states affects the propagation of light through them.

"This change in refractive index, without introducing optical loss, allows for the design of devices that control infrared light without the need for mechanical parts," Roberts says.

As an example, imagine a laser beam that is pointing in one direction and needs to be changed to another. In current systems, a large mechanical gimbal would physically move a lens to steer the beam to another position. A thin-film lens made of GSST would be able change positions by electrically reprogramming the phase-change materials, enabling beam steering with no moving parts.

The team has already tested the material successfully in a moving lens. They have also demonstrated its use in infrared hyperspectral imaging, which is used to analyze images for hidden objects or information, and in a fast optical shutter that was able to close in nanoseconds.

The potential uses for GSST are vast, and an ultimate goal for the team is to design reconfigurable optical chips, lenses, and filters, which currently must be rebuilt from scratch each time a change is required. Once the team is ready to move the material beyond the research phase, it should be fairly easy to transition it into the commercial space. Because it's already compatible with standard microelectronic fabrication processes, GSST components could be made at a low cost and in large numbers.

Recently, the laboratory obtained a combinatorial sputtering chamber -- a state-of-the-art machine that allows researchers to create custom materials out of individual elements. The team will use this chamber to further optimize the materials for improved reliability and switching speeds, as well as for low-power applications. They also plan to experiment with other materials that may prove useful in controlling visible light.

The next steps for the team are to look closely into real-world applications of GSST and understand what those systems need in terms of power, size, switching speed, and optical contrast.

"The impact [of this research] is twofold," Hu says. "Phase-change materials offer a dramatically enhanced refractive index change compared to other physical effects -- induced by electric field or temperature change, for instance -- thereby enabling extremely compact reprogrammable optical devices and circuits. Our demonstration of bistate optical transparency in these materials is also significant in that we can now create high-performance infrared components with minimal optical loss." The new material, Hu continues, is expected to open up an entirely new design space in the field of infrared optics.

Published February 2020

Rate this article

[Phase-change materials instead of moving parts: Researchers discover a new way to control infrared light]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2020 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy